регрессионные модели курсовая работа

вебкам студия барнаул работа

Работа для девушек в Самаре Кратко Список. Самарская область Самара

Регрессионные модели курсовая работа nyctea scandiaca photo

Регрессионные модели курсовая работа

Теоретически такая абстракция воспроизводится. Приемы абстракции часто применяются при изучении взаимосвязей между двумя признаками парной корреляции. Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия.

Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных. В основе первого этапа статистического изучения связи лежит качественный анализ изучаемого явления, связанный с анализом природы, социального или экономического явления методами экономической теории, социологии, конкретной экономики. Второй этап — построение модели связи.

Он базируется на методах статистики: группировках, средних величинах, таблицах и т. Третий, последний этап — интерпретация результатов — вновь связан с качественными особенностями изучаемого явления. Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и от поставленных задач. Связи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований. Признаки по их значению для изучения взаимосвязи делятся на 2 класса.

Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.

Между различными явлениями и их признаками необходимо прежде всего выделить 2 типа связей: функциональную жестко детерминированную и статистическую стохастически детерминированную. В соответствии с жестко детерминистическим представлением о функционировании экономических систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, то есть любое действие вызывает строго определенный результат; случайными непредвиденными заранее воздействиями при этом пренебрегают.

Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной 1. Разновидностью такой закономерности является функциональная связь. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной.

Регрессионный анализ является основным средством исследования зависимостей между социально-экономическими переменными. Эту задачу мы рассмотрим в рамках самой распространенной в статистических пакетах классической модели линейной регрессии. Специфика социологических исследований состоит в том, что очень часто необходимо изучать и предсказывать социальные события.

Вторая часть данной главы будет посвящена регрессии, целью которой является построение моделей, предсказывающих вероятности событий. Величина называется ошибкой регрессии. Первые математические результаты, связанные с регрессионным анализом, сделаны в предположении, что регрессионная ошибка распределена нормально с параметрами, ошибка для различных объектов считаются независимыми. Кроме того, в данной модели мы рассматриваем переменные как неслучайные значения.

Такое, на практике, получается, когда идет активный эксперимент, в котором задают значения например, назначили зарплату работнику , а затем измеряют оценили, какой стала производительность труда. Связь признака у с признаком х называется функциональной, если каждому возможному значению независимого признака х соответствует 1 или несколько строго определенных значений зависимого признака у.

Определение функциональной связи может быть легко обобщено для случая многих признаков х1,х2 …хn. Метод включения и исключения переменных состоит в следующем. Из множества факторов, рассматриваемых исследователем как возможные аргументы регрессионного уравнения, отбирается один, который более всего связан корреляционной зависимостью.

Далее проводится та же процедура при двух выбранных переменных, при трех и т. Процедура повторяется до тех пор, пока в уравнение не будут включены все аргументы, выделенные исследователем, удовлетворяющие критериям значимости включения. Замечание: во избежание зацикливания процесса включения исключения значимость включения устанавливается меньше значимости исключения. Переменные, порождаемые регрессионным уравнением. Сохранение переменных, порождаемых регрессией, производится подкомандой.

Благодаря полученным оценкам коэффициентов уравнения регрессии могут быть оценены прогнозные значения зависимой переменной, причем они могут быть вычислены и там, где значения определены, и там где они не определены. Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого результативного признака, а также точный механизм их влияния, выраженный определенным уравнением.

Функциональную связь можно представить уравнением:. В реальной общественной жизни ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

Стохастическая связь — это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин х1,х2 …хn случайных или неслучайных изменением закона распределения. Это обуславливается тем, что зависимая переменная результативный признак , кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых случайных факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причём неизвестен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной — реализация случайной величины. Однако при небольшой взаимосвязи между переменными, если стандартизовать переменные и рассчитать уравнение регрессии для стандартизованных переменных, то оценки коэффициентов регрессии позволят по их абсолютной величине судить о том, какой аргумент в большей степени влияет на функцию.

Стандартизация переменных. Бета коэффициенты. Коэффициенты в последнем уравнении получены при одинаковых масштабах изменения всех переменных и сравнимы. В случае взаимосвязи между аргументами в правой части уравнения могут происходить странные вещи. Надежность и значимость коэффициента регрессии. Здесь обозначен коэффициент детерминации, получаемый при построении уравнения регрессии, в котором в качестве зависимой переменной взята другая переменная.

Из выражения видно, что величина коэффициента тем неустойчивее, чем сильнее переменная связана с остальными переменными. Эта статистика имеет распределение Стьюдента. В выдаче пакета печатается наблюдаемая ее двусторонняя значимость - вероятность случайно при нулевом регрессионном коэффициенте получить значение статистики, большее по абсолютной величине, чем выборочное.

Значимость включения переменной в регрессию. При последовательном подборе переменных предусмотрена автоматизация, основанная на значимости включения и исключения переменных. Модель стохастической связи может быть представлена в общем виде уравнением:. За это иногда зависимую переменную называют откликом.

Теория регрессионных уравнений со случайными независимыми переменными сложнее, но известно, что, при большом числе наблюдений, использование метода разработанного корректно. Для получения оценок коэффициентов регрессии минимизируется сумма квадратов ошибок регрессии. В пакете вычисляются статистики, позволяющие решить эти задачи. Существует ли линейная регрессионная зависимость?

Для проверки одновременного отличия всех коэффициентов регрессии от нуля проведем анализ квадратичного разброса значений зависимой переменной относительно среднего. Его можно разложить на две суммы следующим образом. Статистика в условиях гипотезы равенства нулю регрессионных коэффициентов имеет распределение Фишера и, естественно, по этой статистике проверяют, являются ли коэффициенты одновременно нулевыми. Коэффициенты детерминации и множественной корреляции.

При сравнении качества регрессии, оцененной по различным зависимым переменным, полезно исследовать доли объясненной и необъясненной дисперсии. Корень из коэффициента детерминации называется коэффициентом корреляции. Следует иметь в виду, что является смещенной оценкой. Абсолютные значения коэффициентов не позволяют сделать такой вывод.

Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся, и зависимость, если она имеет существенную силу, проявится достаточно отчётливо. Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами.

При такой связи среднее значение математическое ожидание случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин х1,х2 …хn. Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у.

Наличие корреляционных связей присуще многим общественным явлениям. Корреляционная связь — понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, то есть любой другой характеристики вариации.

Таким образом, корреляционная связь является частным случаем стохастической связи. Прямые и обратные связи. В зависимости от направления действия, функциональные и стохастические связи могут быть прямые и обратные.

При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, то есть с увеличением факторного признака увеличивается и результативный, и, наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего разряд , тем выше уровень производительности труда — прямая связь.

А чем выше производительность труда, тем ниже себестоимость единицы продукции — обратная связь. Рассмотрим, что представляет собой эта значимость. Обозначим коэффициент детерминации, полученный при исключении из правой части уравнения переменной. При этом мы получим уменьшение объясненной дисперсии, на величину.

Для оценки значимости включения переменной используется статистика, имеющая распределение Фишера при нулевом теоретическом приросте. Вообще, если из уравнения регрессии исключаются переменных, статистикой значимости исключения будет. Пошаговая процедура построения модели. Основным критерием отбора аргументов должно быть качественное представление о факторах, влияющих на зависимую переменную, которую мы пытаемся смоделировать.

Очень хорошо реализован процесс построения регрессионной модели: на машину переложена значительная доля трудностей в решении этой задачи. Возможно построение последовательное построение модели добавлением и удалением блоков переменных. Но мы рассмотрим только работу с отдельными переменными. По умолчанию программа включает все заданные переменные. Прямолинейные и криволинейные связи.

По аналитическому выражению форме связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание или убывание значений результативного признака. Математически такая связь представляется уравнением прямой, а графически — прямой линией. Отсюда ее более короткое название — линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание или убывание результативного признака происходит неравномерно, или же направление его изменения меняется на обратное.

Геометрически такие связи представляются кривыми линиями гиперболой, параболой и т. Однофакторные и многофакторные связи. По количеству факторов, действующих на результативный признак, связи различаются: однофакторные один фактор и многофакторные два и более факторов. Однофакторные простые связи обычно называются парными так как рассматривается пара признаков. Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной множественной связи имеют в виду, что все факторы действуют комплексно, то есть одновременно и во взаимосвязи.

Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками. С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.

Процедура повторяется до тех пор, пока в уравнение. Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы аналитического выражения влияния факторных признаков на результативные.

Задачами регрессионного анализа являются выбор типа модели формы связи , установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной функции регрессии. Корреляционный и регрессионный анализ. Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется, как правило, с помощью экономико-статистических моделей.

В широком смысле модель — это аналог, условный образ изображение, описание, схема, чертёж и т. Модель представляет собой логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, даёт возможность установить основные закономерности изменения оригинала.

В модели оперируют показателями, исчисленными для качественно однородных массовых явлений совокупностей. Выражение и модели в виде функциональных уравнений используют для расчёта средних значений моделируемого показателя по набору заданных величин и для выявления степени влияния на него отдельных факторов. По количеству включаемых факторов модели могут быть однофакторными и многофакторными два и более факторов. В зависимости от познавательной цели статистические модели подразделяются на структурные, динамические и модели связи.

Двухмерная линейная модель корреляционного и регрессионного анализа однофакторный линейный корреляционный и регрессионный анализ. Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного анализа х на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ.

Овладение теорией и практикой построения и анализа двухмерной модели корреляционного и регрессионного анализа представляет собой исходную основу для изучения многофакторных стохастических связей. Однако при небольшой взаимосвязи между переменными 2. Важнейшим этапом построения регрессионной модели уравнения регрессии является установление в анализе исходной информации математической функции.

Сложность заключается в том, что из множества функций необходимо найти такую, которая лучше других выражает реально существующие связи между анализируемыми признаками. Выбор типов функции может опираться на теоретические знания об изучаемом явлении, опыт предыдущих аналогичных исследований, или осуществляться эмпирически — перебором и оценкой функций разных типов и т.

При изучении связи экономических показателей производства деятельности используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют путём логарифмирования или замены переменных в линейную форму. Уравнение однофакторной парной линейной корреляционной связи имеет вид:. Коэффициент парной линейной регрессии a1 имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у.

Вышеприведенное уравнение показывает среднее значение изменения результативного признака y при изменении факторного признака х на одну единицу его измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a1 указывает направление этого изменения. Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:. Р ешим эту систему в общем виде:.

П араметры уравнения парной линейной регрессии иногда удобно исчислять по следующим формулам, дающим тот же результат:. Определив значения a0 , a1 и подставив их в уравнение связи. Рассмотрим построение однофакторного уравнения регрессии зависимости работающих активов у от капитала х см. Таблица 1, Приложение 1. Здесь представлены показатели 32 банков: размер капитала и работающих активов. Передо мной стоит задача определить, есть ли зависимость между этими двумя признаками и, если она существует, определить форму этой зависимости, то есть уравнение регрессии.

За факторный признак я взял размер капитала банка, а за результативный признак — работающие активы. Сопоставление данных параллельных рядов признаков х и у показывает, что с убыванием признака х капитал , в большинстве случаев убывает и признак у работающие активы.

Следовательно, можно предположить, что между х и у существует прямая зависимость, пусть неполная, но выраженная достаточно ясно. Для уточнения формы связи между рассматриваемыми признаками я использовал графический метод. Я нанес на график точки, соответствующие значениям х и у, и получил корреляционное поле см. График 1, Приложение 2. Анализируя поле корреляции, можно предположить, что возрастание признака у идет пропорционально признаку х.

В основе этой зависимости лежит прямолинейная связь, которая может быть выражена простым линейным уравнением регрессии:. Пользуясь вышеуказанными формулами для вычисления параметров линейного уравнения регрессии и расчётными значениями из Таблицы 1 Приложение 1 , получаем:.

Следовательно, регрессионная модель зависимости работающих активов от капитала банков может быть записана в виде конкретного простого уравнения регрессии:. Это уравнение характеризует зависимость работающих активов от капитала банка. В моем случае эти суммы равны. Но для того, чтобы применить мою формулу, надо рассчитать, насколько она приближенна к реальности, то есть проверить ее адекватность.

Для практического использования моделей регрессии большое значение имеет их адекватность, то есть соответствие фактическим статистическим данным. Корреляционный и регрессионный анализ обычно особенно в условиях так называемого малого и среднего бизнеса проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции — параметры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов.

Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей. Следовательно, при регрессионной связи одному и тому же значению x величины X в отличие от функциональной связи могут соответствовать разные случайные значения величины Y.

Уравнение, связывающее эти величины, называется уравнением регрессии, а соответствующий график — линией регрессии величины Y по X. К задачам регрессионного анализа относятся 2 :. В регрессионном анализе рассматривается односторонняя зависимость переменной Y ее еще называют функцией отклика, результативным признаком, предсказываемой переменной от одной или нескольких независимых переменных X называемых также объясняющими или предсказывающими переменными, факторными признаками.

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую парную и множественную регрессии. Простая регрессия представляет собой регрессию между двумя переменными y и x, то есть модель вида:. Множественная регрессия соответственно представляет собой регрессию результативного признака с двумя и большим числом факторов, то есть модель вида 3 :.

В данной работе рассмотрена модель парной регрессии. Прежде всего из всего круга факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется объединяющей переменной. Уравнение простой регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.

В уравнении регрессии корреляционная по сути связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией. Практически в каждом отдельном случае величина y складывается из двух слагаемых:. Ее присутствие в модели обусловлено тремя источниками: спецификацией модели, выборочным характером исходных данных, особенностями измерения переменных.

При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции. Основные типы кривых, используемые при количественной оценке связей:. Различают два класса нелинейных регрессий:. Хочу больше похожих работ Учебные материалы. Главная Опубликовать работу Правообладателям Написать нам О сайте. Полнотекстовый поиск: Где искать:. Основы эконометрики. Эконометрика — это не то же самое, что экономическая статистика.

Она отнюдь не идентична тому, что мы называем общей экономической теорией, хотя значи Основные тригонометрические формулы 2. Методические указания по дисциплине Инженерная графика. Формы и размеры основной надписи устанавливает ГОСТ 2. На чертежах деталей, сборочных чертежах, видов общих, схем основная надпись применяетс Применение регрессионного анализа в эконометрике.

Сохрани ссылку в одной из сетей:. Загрузить файл. Применение регрессионного анализа для изучения объекта исследования

РАБОТА В ПОЛИЦИИ ДЛЯ ДЕВУШЕК ОТЗЫВЫ МОСКВА

ЭСКОРТ ДЕВУШКИ ЕКАТЕРИНБУРГ РАБОТА

Вполне Меня веб модели сообщество всегда высоте!

Регрессионная модель объединяет широкий класс универсальных функций, которые описывают некоторую закономерность. При этом для построения модели в основном используются измеряемые данные, а не знание свойств исследуемой закономерности. Такая модель часто неинтерпретируема, но более точна. Это объясняется либо большим числом моделей-претендентов, которые используются для построения оптимальной модели, либо большой сложностью модели. Нахождение параметров регрессионной модели называется обучением модели.

Недостатки регрессионного анализа: модели, имеющие слишком малую сложность, могут оказаться неточными, а модели, имеющие избыточную сложность, могут оказаться переобученными. Примеры регрессионных моделей: линейные функции, алгебраические полиномы, ряды Чебышёва, нейронные сети без обратной связи, например, однослойный персептрон Розенблатта, радиальные базисные функции и прочее.

И регрессионная, и математическая модель, как правило, задают непрерывное отображение. Требование непрерывности обусловлено классом решаемых задач: чаще всего это описание физических, химических и других явлений, где требование непрерывности выставляется естественным образом. Иногда на отображение накладываться ограничения монотонности, гладкости, измеримости, и некоторые другие.

Теоретически, никто не запрещает работать с функциями произвольного вида, и допускать в моделях существование не только точек разрыва, но и задавать конечное, неупорядоченное множество значений свободной переменной, то есть, превращать задачи регрессии в задачи классификации. Поможем написать любую работу на аналогичную тему.

Регрессионные модели. Их задачи, возможности и ограничения. Нужна помощь в написании работы? Узнать стоимость. Так как регрессионный анализ предполагает поиск зависимости матожидания случайной величины от свободных переменных , то в её состав входит аддитивная случайная величина : Предположение о характере распределения случайной величины называются гипотезой порождения данных.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы. Расчет стоимости Гарантии Отзывы. Поможем написать любую работу на аналогичную тему Реферат Регрессионные модели. От руб Контрольная работа Регрессионные модели. От руб Курсовая работа Регрессионные модели. От руб. Получить выполненную работу или консультацию специалиста по вашему учебному проекту.

Поделись с друзьями. Содержание Материалы 4 Меню Основные представления о моделировании. Базовые понятия и термины. Основные типы моделей. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям. Оценки считаются эффективными , если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному. Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки.

Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице.

Указанные критерии оценок несмещенность, состоятельность и эффективность обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать поведение остаточных величин регрессии. Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.

Исследования остатков предполагают проверку наличия следующих пяти предпосылок МНК: 1 случайный характер остатков; 2 нулевая средняя величина остатков, не зависящая от ; гомоскедастичность - дисперсия каждого отклонения , одинакова для всех значений ; отсутствие автокорреляции остатков - значения остатков распределены независимо друг от друга; 5 остатки подчиняются нормальному распределению.

Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель. Прежде всего, проверяется случайный характер остатков - первая предпосылка МНК. С этой целью стоится график зависимости остатков от теоретических значений результативного признака рис. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения хорошо аппроксимируют фактические значения.

Возможны следующие случаи, если зависит от то: остатки не случайны рис. Зависимость случайных остатков от теоретических значений. В этих случаях необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.

Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что. Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных. Вместе с тем, несмещенность оценок коэффициентов регрессии, полученных МНК, зависит от независимости случайных остатков и величин , что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью наряду с изложенным графиком зависимости остатков от теоретических значений результативного признака строится график зависимости случайных остатков от факторов, включенных в регрессию рис.

Зависимость величины остатков от величины фактора. Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений. Если же график показывает наличие зависимости и , то модель неадекватна. Причины неадекватности могут быть разные. Возможно, что нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора.

Может быть неправильна спецификация модели и в нее необходимо ввести дополнительные члены от , например. Скопление точек в определенных участках значений фактора говорит о наличии систематической погрешности модели.

Предпосылка о нормальном распределении остатков позволяет проводить проверку параметров регрессии и корреляции с помощью - и -критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, то есть при нарушении пятой предпосылки МНК.

Совершенно необходимым для получения по МНК состоятельных оценок параметров регрессии является соблюдение третьей и четвертой предпосылок. В соответствии с третьей предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции рис.

Примеры гетероскедастичности. На рис. Наличие гомоскедастичности или гетероскедастичности можно видеть и по рассмотренному выше графику зависимости остатков от теоретических значений результативного признака. Наиболее наглядные графики гомо - и гетероскедастичности Для множественной регрессии данный вид графиков является наиболее приемлемым визуальным способом изучения гомо - и гетероскедастичности.

При построении регрессионных моделей чрезвычайно важно соблюдение четвертой предпосылки МНК - отсутствие автокорреляции остатков, то есть значения остатков , распределены независимо друг от друга.